Homework set 2, Phys 785, Spring 2014

Reading: Ch. 11.9-11.10, Ch. 12.1, 12.7

All chapters (Ch.), equations (Eq.) and problems (Pb.) refer to Jackson 3rd edition.

Problem 1

A familiar formula in covariant form. After investigating the E&M properties of a class of materials, a physicist summarized the results into a formula in covariant form,

$$J^{\alpha} - \frac{1}{c^2} (U_{\beta} J^{\beta}) U^{\alpha} = -\frac{\sigma}{c} F^{\alpha \beta} U_{\beta},$$

in the standard notation of Jackson, e.g., here U^{α} is the 4-velocity of the material sample.

- (a) Simplify the formula in the rest frame K', where the sample sits still, to find out what physical quantity σ is.
- (b) In the lab frame, the sample moves on a track with constant velocity v in given external fields (E, B), and a charge density ρ is observed in the sample. Use the formula above to show that the current density **J** observed in the lab is given by

$$\mathbf{J} = \sigma \gamma [\mathbf{E} + \frac{1}{c} \mathbf{v} \times \mathbf{B} - \frac{1}{c^2} \mathbf{v} (\mathbf{v} \cdot \mathbf{E})] + \rho \mathbf{v}.$$

[20 pts]

Problem 2

Constructing Lagrange density for 2D electromagnetism. Let us apply what we've learned so far to construct possible theories for "electromagnetism" in a two-dimensional (2D) world, the xy plane. Remember there is no z coordinate, so Lorentz 4-vectors are now replaced by 3-vectors.

The starting point is the 3-vector $A^{\mu} = (\phi, A_x, A_y)$, or in compact notation $A^{\mu} = (\phi, \mathbf{A})$, where $\mathbf{A} = A_x \hat{x} + A_y \hat{y}$ and $\mu = 0, 1, 2$. In this 2D world, the magnetic field is defined as $B = \partial_x A_y - \partial_y A_x$, so it is a *scalar* instead of a vector, while the electric field $\mathbf{E} = -\nabla \phi - \partial_t \mathbf{A}/c = E_x \hat{x} + E_y \hat{y}$ is a vector. Here, $\nabla \phi \equiv (\partial_x \phi) \hat{x} + (\partial_y \phi) \hat{y}$. The metric tensor $g^{\mu\nu}$ is a 3 × 3 diagonal matrix with diagonal elements (1, -1, -1).

(a) Define the field strength tensor the usual way, $F^{\alpha\beta} = \partial^{\alpha} A^{\beta} - \partial^{\beta} A^{\alpha}$. Find the explicit expression for $F^{\alpha\beta}$ and

- $F_{\alpha\beta}$ in terms of E_x, E_y, B . Present your results in matrix form.
- (b) For given source $J^{\alpha}=(c\rho,\mathbf{J})$, construct a Lagrangian density \mathcal{L}_{2D} for 2D electromagnetism. It has to be gauge invariant, and a Lorentz scalar. Hint: use the 3D Maxwell theory as a guide, \mathcal{L}_{2D} may depend on A^{α} , J^{α} , $F^{\alpha\beta}$ etc.
 - (c) A famed gauge field theory in 2D is given by the Chern-Simons Lagrangian density

$$\mathcal{L}_{cs} = \frac{\kappa}{2} \epsilon^{\mu\nu\rho} A_{\mu} \partial_{\nu} A_{\rho} - A_{\mu} J^{\mu}.$$

Here the Levi-Civita symbol $\epsilon^{\mu\nu\rho}$ is the completely antisymmetric third-rank tensor with $\epsilon^{012}=1$, and κ is a constant. Derive the equations of motion from the Euler-Lagrange equation

$$\partial_{\beta} \frac{\partial \mathcal{L}_{cs}}{\partial (\partial_{\beta} A_{\alpha})} = \frac{\partial \mathcal{L}_{cs}}{\partial A_{\alpha}}.$$

Show that the charge density ρ is proportional to the magnetic field B, and an electric field in x direction can induce a current in the y direction. This is very different from Maxwell theory, and seems weird. But this property can be extremely useful: the Chern-Simons theory is used to describe the fractional quantum Hall effect and topological insulators in condensed matter physics.

Solving this problem requires a good understanding of Ch. 12.7. [20 pts]